
Automate Testing and
Deployments
Today, developers write automated scripts that can verify thousands of scenarios in minutes and
then deploy updated code into production environments multiple times a day. They use automated
performance tests which simulate surges in traffic to identify performance bottlenecks. While
manual tests and quality assurance are still necessary, automated tests provide consistent and
reliable protection against unintentional regressions, and make it possible for developers to
confidently release frequent updates to the service.

Key Questions
1. What percentage of the code base is covered by automated tests?

2. How long does it take to build, test, and deploy a typical bug fix?

3. How long does it take to build, test, and deploy a new feature into production?

4. How frequently are builds created?

5. What test tools are used?

6. Which deployment automation or continuous integration tools are used?

7. What is the estimated maximum number of concurrent users who will want to
use the system?

8. How many simultaneous users could the system handle, according to the most
recent capacity test?

9. How does the service perform when you exceed the expected target usage
volume? Does it degrade gracefully or catastrophically?

10. What is your scaling strategy when demand increases suddenly?

Checklist



Create automated tests that verify all user-facing functionality

Create unit and integration tests to verify modules and components

Run tests automatically as part of the build process

Perform deployments automatically with deployment scripts, continuous delivery services, or
similar techniques

Conduct load and performance tests at regular intervals, including before public launch

Revision #1
Created 26 February 2024 16:20:04 by Tom O'Malley
Updated 26 February 2024 16:20:44 by Tom O'Malley


